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Abstract 

 
 In this paper, we present a vascular tree model made with synthetic materials and 
which allows us to obtain images to make a 3D reconstruction. In order to create this model, we 
have used PVC tubes of several diameters and lengths that will let us evaluate the accuracy of 
our 3D reconstruction. 
 
 We have made the 3D reconstruction from a series of images that we have from our 
model and after we have calibrated the camera. In order to calibrate it we have used a corner 
detector. Also we have used Optical Flow techniques to follow the points through the images 
going and going back. Once we have the set of images where we have located a point, we have 
made the 3D reconstruction choosing by chance a couple of images and we have calculated the 
projection error. After several repetitions, we have found the best 3D location for the point. 
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1. Introduction. 
 

Given the difficulties to obtain medical images in good conditions, due to their privacy  
and diverse technical problems that these can present, such as: artifacts, occlusions, poor 
definition of the image, etc; we have developed a model of vascular tree using PVC.  

 
This way we can obtain a series of images following the same technology of a rotational 

angiography, planning an arch of fixed radius about the model and obtaining the images with an 
angular separation of about 3 degrees. Once obtained, they were manipulated in order that the 
final result is as similar as possible to the angiographies, but without the problems previously 
mentioned. Besides, by having the 3D model it is possible to test the quality of the results 
obtained, knowing exact values such as: distances between bifurcations, the diameters of the 
glasses, etc; which will allow us to know the kindness of our results. 
 
This work has developed in the following way:  

1. Obtaining the images. 
2. Calibration of cameras.  
3. Follow-up of points.  
4. Reconstruction in 3D. 

 
 

2. Rotational Angiography Features.  
 
 We want to reconstruct images to apply in the Rotational Angiography field that it 
has the next features: 
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 The series of images in Rotational Angiography is acquired while the imaging 
assembly rotates in a continuous arc around the patient. The whole acquisition is rather fast, so 
that the complete series can be acquired with a single injection of contrast agent. 
 
  The quality of the individual images is generally fully adequate for diagnosis, with 
the following added advantages: wide range of projections, optimum views of vascular 
structures. 
 
 For the 3D reconstruction, it is essential for the images to precisely match each other. 
This requires an extremely stable and reproducible image geometry. The system is calibrated to 
compensate for distortion in the image intensifier such us pincushion and the varying distortion 
caused by movement through the magnetic field of the earth.  
 
 The images are acquired in the rotational angiography mode over an angle of 180 
degrees. The run maybe carried out in one of three different angulations: -30 degrees cranial, 0 
degrees axial, 30 degrees caudal. Images are acquired at a frames rate of 12.5 frames by 
seconds, and a rotation speed of up to 30 degrees per second, the whole acquisition takes 8 
seconds resulting in an average of 100 images per run. 
   
 We have made the images with an angle of 3.6 degrees and approximately three 
meters of distance from the model using a of 70 mm focal distance with a digital camera and 
because the characteristics of its digitizer then we have a focal distance 105 mm with an arc of 
270 degrees that allows around 70 images.  We have also obtained images of a calibrator in 
order to obtain the intrinsic parameters of the camera. 
 

 
Figure 1: images acquired 

 
  
3.  Multiscale Analisis and Calibration Camera. 
 

One of the main concepts of vision theory and image analysis is multiscale analysis. 
A Multiscale Analysis Tt associates, with an original image u(0) = u0 a  sequence of smoothed 
images u(t,x,y) which depend upon an abstract parameter t > 0, the scale.  
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The datum of u0(x,y) is not absolute in perception theory, but can be considered as the 
element of an equivalence class. If A is any affine map to the plane, u0(x,y) and u0(A(x,y)) can 
be assumed equivalent from a perceptual point of view. Last but not least, the observation of 
u0(x,y) does not generally give any reliable information about the number of photons sent by 
any visible place to the optical sensor. Therefore, the equivalence class in consideration will be 
g(u0(A(x,y))), where g stands for any contrast function depending on the sensor. These 
considerations lead us to focus on the only multiscale analyses which satisfies these invariance 
requirements : The Affine Morphological Scale Space (AMSS). This multiscale analyses can be 
defined by a simple Partial Differential Equation: 
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where u(t,x,y) denotes the image analyzed at the scale t and the point (x,y). 
 

In order to calibrate a camera system we need to corner detection and this is very 
sensitive to noise. The AMSS multiscale analysis present the advantage that we know, 
analytically, the displacement of the corner location across the scales. Then we can search it in 
at the scale tn = t0 +n∆t, for n=1,..,N, where ∆t represents the discretization step for the scale and 
t0 represents the initial scale that we use to begin to look for corners. 

 
We compute for the scale t0   the location of the extreme of the curvature that we 

denote by ( )ii yx 00 ,  ,for i=1,.., M, these points represent the initial candidates to be corners. We 

follow across the location ( )i
n

i
n yx ,  of the curvature extreme. 

 
For each sequence ( )i

n
i
n yx ,  n=1,..,N, we compute in a robust way(using orthogonal 

regression and eliminating outliers) the best line which fit the sequence of points, this line 
corresponds to the bisector line of the corner, and we can represent it as a straight line which 
equation: 
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 where α is the angle of the corner and ( )yx bbb ,= , is the unit vector in the direction of the 
bisector line of the corner, and t is the scale. Then we can find the corner doing t = 0 in this 
equation. 

 
 In order to calibrate the cameras system, we extract the characteristics of the sequence 
of views with a morphologic corner detector. This detector gives us sub pixel information. 
When the views are taken from very close positions, the conventional methods of calibration 
can be unstable, to solve this problem we divide the sequences of views into several sub 
sequences (in this way the optical centre displacements are bigger).   Now, we calibrate every 
subsequence of view in an independent way. 
 

 
Figure 2: Motion parameters derived from point matches. 

 
 In the last step, we make the calibration between the different sub sequences to obtain 
only one calibration. The method we have used is very stable, even when there are noise and 
small displacements between the optical centres. 
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3. Optical Flow and 3D Reconstruction 
 

Once we have calibrated the camera system we propose a method for the recovering of 
disparity maps between pair of stereoscopic images. Disparity maps are obtained through a 
matching process in where we have to find for the pixels in the left image their correspondent 
on the right image. There are some methods, like correlation-based techniques, that estimate 
good matching points but do not generate smooth disparity maps for the whole image, so the 
solutions in this case are not continuous.  
 

To improve the accuracy of the matching process we make use of the so-called epipolar 
geometry. This geometry represents the relation that exists between stereoscopic images. 
Thanks to this geometry, the method is able to look for correspondences in straight lines only. 

 

                                                
Figure 3: Epipolar Geometry and corresponding points 

 
The method we propose for the computation of disparity maps is based on an energy 

minimization approach: 
 
 
 
Where I and I´ are the stereoscopic images, λ  is a parameter that gives us the distance 

between the point that it is the projection of m over the it epipolar straight line and the 
responsive point of m in I’, m’ (see image 3). The second term in the equation is used to 
regularize. D is a diffusion tensor that diffuses in one or another way depending where the point 
is placed. If gradient of I is high then the regularization is over the contour line and if it is low, 
we make regularization. 

 
This energy consists of an attachment term that enables the process to find similar pixels 

in both images and a regularization term that is necessary to constraint the number of possible 
solutions and to generate smooth solutions. This method is a dense method in the sense that for 
every pixel on one image we obtain its correspondent on the other image.  
 

When we minimize this energy, we obtain the Euler-Lagrange equations, which are 
represented by means of partial differential equations. This is a diffusion-reaction equation that 
behaves anisotropically at contours with high values for the gradient of the images and 
isotropically at homogeneous regions where the image gradient is low. The diffusion part is 
formulated in such a way that the discontinuities of the images are preserved. We use a scale-
space and pyramidal strategy to allow the method to locate large displacements. Thanks to this 
energy minimization approach the resulting disparity maps that we may obtain are smooth by 
regions.  

 
To search the corresponding points in every image, we start with a point in one image, 

and using the optical flow techniques, we search the corresponding point in the next image. 
Once this point is obtained, we go back and we search if the corresponding point in the first 
image is the start point. If it is true, we continue searching other point in the next image. Once 
we have this new point we come back until the first image verifying that the points calculates 
are the same points that we have with a small error. We finish this process when we search a 
point bad placed. 
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When we have a set of images, then we take a couple of cameras by chance and we 

reconstruct the 3D point. We project this point to the plane of the whole cameras and we 
calculate the projection error, the distance between both points, the real point and the projected 
point in every camera. 

Later we take another couple of cameras, always by chance, and we repeat the same 
steps several times, up to 8 times if it is possible.  We keep with the point that minimizes the 
projection error. 
 We shown some results in the figure 4, we have used 25 images to obtain the 3D 
reconstruction with different projection error: 1.5 in the left image and 1.0 in the right image, 
and we can observe that in the right image there are less points than the left image, but this 
points are better placed. 
  

 
Figure 4: some results 
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