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Abstract. One of the main technique used to recover motion analysis
from two images or to register them is variational optical flow, where
the pixels of one image are matched to the pixels of the second im-
age by minimizing an energy functional. In the standard formulation of
variational optical flow, the estimated motion vector field depends on
the reference image and is asymmetric. However, in most application the
solution should be independent of the reference image. Only few symmet-
rical formulations of the optical flow has been proposed in the literature,
where the solution is constraint to be symmetric using a combination
of the flow in both directions. We propose a new symmetric variational
formulation of the optical flow problem, where the flow is naturally sym-
metric. Results on the Yosemite sequence show an improved accuracy of
our symmetric flow with respect to standard optical flow algorithm.

1 Introduction

The problem of motion analysis or registration between two images is an im-
portant problem that has been widely addressed in the literature. One of the
main technique used to solve this problem is optical flow, where the pixels of
one image are matched to the pixels of the second image. Hence, the estimated
motion vector field depends on the reference image and is asymmetric. However,
in most application the solution should be independent of the reference image.
Symmetrical formulations of the optical flow has been proposed in [1,2,3], where
the solution is constraint to be symmetric using a combination of the flow in
both directions.

In [1], the consistency (or symmetry) of the mapping between two images I1
and I2 is enforced by jointly estimating the mapping from I1 to I2 and the map-
ping from I2 to I1 and by constraining those two mapping to be inverse to each
other. The authors in [2] propose a different approach where the transforma-
tion between the two images, denoted T , is obtained by minimizing an energy
functional such that E(I1, I2, T ) = E(I2, I1, T

−1). To achieve this symmetric
property, the energy is defined as the average of a non-symmetric energy applied
to T and its inverse T−1. Making the hypothesis that E(T ) can be described from
the derivatives of T , the energy E(T−1) is deduced from E(T ) without explic-
itly computing the inverse transformation T−1. This approach is interesting but
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leads to numerical difficulties when the derivatives of the transformation T are
small. The approach in [3] is similar to the one of [1], but the authors explicitly
take into account the discontinuities of the flow and the possible occlusions.

We propose a new symmetric variational formulation of the optical flow prob-
lem, where the flow is naturally symmetric. Results on the Yosemite sequence
show an improved accuracy of our symmetric flow with respect to standard op-
tical flow algorithm.

2 Formulation of the Problem

In the standard variational optical flow approach, given two images I1 and I2, the
problem consists in finding a displacement image u, where I1(x) = I2(x+u). In
order to find a displacement between 2 images I1 and I2 in a symmetric way, we
consider an intermediate image Im at half way between I1 and I2, so that there
exists a displacement field u which fulfills ∀x, Im(x) = I1(x − u

2 ) = I2(x + u
2 ).

We illustrate this approach in Fig. 1.

Fig. 1. Illustration of the hypothesis of the symmetric flow

To estimate this displacement, we minimize the energy:

E(u) =
∫

Ω

(
I1(x−) − I2

(
x+))2

dx
︸ ︷︷ ︸

data term

+α

∫
Ω

‖∇u(x)‖2dx
︸ ︷︷ ︸

regularization term

, (1)

where we denote x+ = u + u
2 , x− = x − u

2 , and α is a scalar coefficient that
weights the regularization (or smoothing) term. Under the assumption of inten-
sity conservation for each voxel, the first term (data term) becomes zero when
the first image matches the second one : I1(x−) = I2(x+). This term tries to find
the vector field that best fits the solution. The second term is a regularization
term which smooths the vector field. A classification of different regularizers
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can be found in [4]. In particular, the authors distinguish between image-driven
and flow-driven regularizers and between isotropic and anisotropic ones. In this
paper, since we are mainly interested in the symmetrical property of the flow,
we simply use the L2 norm presented above. The coefficient α is normalized to
allow invariance under global intensity change of the form (I1, I2) → (k I1, k I2).
To this purpose, α is multiplied by

α = α0

⎛
⎝ε +

√
1

|Ω|

∫
Ω

∥∥∥∥∇I1(x−) + ∇I2(x+)
2

∥∥∥∥
2

dx

⎞
⎠

2

(2)

with ε = 10−3.

3 Temporal Regularization

We can use the image sequence information to impose temporal homogeneity
and smoothness to the estimated flow. To this end, we re-formulate the equation,
considering the whole sequence as a 2D+t image I(y) where y = (x, t) = (x, y, t).
We define y− = y − u(y)

2 , and y+ = y + u(y)
2 , where the flow u = (u, v, dt)t and

dt is the constant time between two successive frames of the sequence.
The energy to minimize for the symmetric case is then written as:

E(u) =
∫

Ω

(
I−(y) − I+(y)

)2
dy

︸ ︷︷ ︸
data term

+ α

∫
Ω

(u2
x + u2

y)dy
︸ ︷︷ ︸

spatial reg.

+ αt

∫
Ω

u2
t dy︸ ︷︷ ︸

temporal reg.

, (3)

where u2
x = ∂u

∂x

2
+ ∂v

∂x

2
, u2

y = ∂u
∂y

2
+ ∂v

∂y

2
, u2

t = ∂u
∂t

2
+ ∂v

∂t

2
and αt is a coefficient that

weights the temporal regularization. Both coefficients α and αt are normalized
according to (2).

4 Implementation

To minimize the energies previously defined (without and with temporal reg-
ularization), we first calculate their gradients and we solve the corresponding
Euler-Lagrange equations. In this section, we describe the non-temporal case
from which the corresponding implementation of (3) can be easily deduced.

Euler-Lagrange equations from (1) yield:

(I1(x−) − I2(x+)).
∇I1(x−) + ∇I2(x+)

2
+ αdiv(∇u) = 0. (4)

In order to linearize this equation, we use an iterative scheme where the
displacement field u is successively estimated from the previous result:{

u0 = u0

uk+1 = uk + hk+1,
(5)

where we update the vector field u at each iteration by adding another vector
field h. Supposing that h is small (which is true in practice since we use a
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pyramidal approach) and neglecting the terms in spatial second order derivatives,
we can write:

I1(x−) ≈ I1(x − uk

2
) − ∇It

1(x − uk

2
)
h
2

(6)

I2(x+) ≈ I2(x +
uk

2
) + ∇It

2(x +
uk

2
)
h
2

. (7)

Let us denote

g(x) =
∇I1(x − uk

2 ) + ∇I2(x + uk

2 )
2

(8)

d(x) = I1(x − uk

2
) − I2(x +

uk

2
). (9)

The Euler-Lagrange equation (4) is then written as (at the current location x):

(dg + αΔuk) − ggth + αΔh = 0. (10)

After discretization using finite differences, the Laplacian operator Δh can be
divided in two terms −2nh and S(h), where the n is the image dimension. The
first term only depends on values of h at the current position x and the second
term only depends on values of h at neighbor positions of x: the vector S(h) is
written:

S(h) =
(∑

p∈N∗(x) hx(p)∑
p∈N∗(x) hy(p)

)
, (11)

where N∗(x) denotes the direct neighbors of x (4 in 2D and 6 in 3D), and
h = (hx, hy)t.

Using hk+1 for the current location x and hk for its neighbors, (10) becomes:

Ahk+1 = b, (12)

with A = ggt + α2n I, and b = dg + αdiv(∇uk) + S(hk). The matrix A is
real, symmetric and positive definite, so it can be inverted and we can compute
for each position x, hk+1 = A−1b. To improve the convergence rate, we use a
Gauss-Seidel method which updates the displacement hk+1 at position x using
the values of hk+1 already calculated. This scheme is recursive and to avoid
privileging the direction of scanning the image, we apply two successive iterations
of Gauss-Seidel in reverse directions. Furthermore, we use a pyramidal approach
to compute the displacement flow at several scales, using the results from a given
scale to initialize to the following higher scale.

5 Experiments and Results

In order to quantify the accuracy of our symmetric variational optical flow,
we use the standard Yosemite sequence. The performance of the algorithm is
measured using the angular error as described in [5]. If we consider velocities as
3D vectors were the third component has a constant value of 1, and if we denote
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uc = (uc, vc, 1)t the correct velocity and ue = (uu, ve, 1)t the estimated one, the
angular error is defined as:

ψE = arccos(
uc · ue

‖uc‖ ‖ue‖
). (13)

To compare our results with the ground truth, we have to transform the sym-
metric flow u into a standard flow v defined as I1(x) = I2(x + v(x)), according
to v(x − u

2 ) = u(x).
The flow v(x) is computed as a weighted average of the values of v(x − u

2 ) in
the neighborhood of x. This transformation, described in appendix, is similar to
the one proposed in [6]. In some sense, we can consider this transformation as a
spatial inversion of the flow. To estimate the error introduced by this inversion,
we applied it twice to the ground truth and compared the result to the initial
ground truth. The angular error obtained between both flow was about 0.3
degrees which can be interpreted as a error of 0.15 degrees for a single inversion.
However, this error can be reduced by upsampling the flow image before inversion
and downsampling the result.

Fig. 2. Angular error obtained on Yosemite sequence, for the standard and the symmet-
ric approaches to variational optical flow. Left: 2D algorithms, right: 2D+t algorithms
including a temporal regularization of the flow.

In our experiments, we used the same parameters for the symmetric and
the non-symmetric algorithms. The initial images have been smoothed by a
Gaussian convolution of standard deviation 0.6 before the estimation, the image
intensity at floating-point position was interpolated using a second-order spline
interpolation and we used 3 pyramidal scales were the image dimensions were
divided by two in X and Y directions from one scale to the next. For the temporal
version, the coefficient αt was set to 2 before its normalization. We applied a
series of tests with different values of the regularization parameter α ranging
from 0.25 to 8.0 with a step of 0.25. Results for both algorithms are depicted
in Fig. 2. Despite the potential error introduced by the inversion of the flow,
we observe a better behavior of the symmetrical version of the algorithm. The
symmetric version of the optical flow reaches a better result both in the 2D
and in the 2D+t cases, with minimal angular errors of 2.25 and 1.48 degrees
respectively, while the standard approach reaches minimal angular errors of 2.68
and 1.85 degrees respectively.
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Fig. 3. Angular error obtained on the Yosemite sequence. Left, best result obtained for
the 2D standard approach, right, best result obtained for the 2D symmetric approach.

As we can see in Fig. 3, most of the difference between the symmetric and the
standard approach lies close to the image boundaries, mainly because the symmet-
ric flow just needs half of the total displacement in each direction instead of the full
vector. However, few differences of the angular error appear in the center of the
image, where it is difficult of appreciate if an approach is better than the other.

6 Conclusion

In this paper, we proposed a new approach to variational symmetric optical
flow. This approach has the advantage of simplicity over previously proposed
approaches and it is similar to symmetric approaches used in cross-correlation
techniques. We detailed our numerical scheme and we evaluated our approach
on the standard Yosemite sequence using both a 2D and a 2D+t regularizations.
Results show that the symmetrical version have a better behavior at the image
borders leading to a improved mean angular error compared to a standard ap-
proach. In our future work, we plan to apply this new symmetric approach to
more standard sequences used in optical flow, to experiment different regular-
izers like the Nagel-Enkelmann regularizer, and to apply this approach in the
context of 2D and 3D Particle Image Velocity images.

Acknowledgments

Founded by the European Project FLUID (contract no. FP6-513663).

References

1. Christensen, G., Johnson, H.: Consistent image registration. IEEE Transactions on
Medical Imaging 20(7), 568–582 (2001)

2. Cachier, P., Rey, D.: Symmetrization of the non-rigid registration problem using
inversion-invariant energies: Application to multiple sclerosis. In: Delp, S.L., DiGoia,
A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 472–481. Springer,
Heidelberg (2000)



682 L. Alvarez et al.

3. Alvarez, L., Deriche, D., Papadopoulo, T., Sánchez, J.: Symmetrical dense optical
flow estimation with occlusions detection. In: Heyden, A., Sparr, G., Nielsen, M.,
Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 721–735. Springer, Heidelberg
(2002)
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Computing the Backward Flow, v

In this appendix we examine how to compute the flow from I1 to I2 from the
symmetric flow. The correspondence between both flows is

u(x) = v
(
x − u

2

)
. (14)

The main difficulty here is to deal with discrete images. The displacement
flow v that we are looking for takes values at pixel location, but we only have
its values at the locations x− u

2 , which are not centered on pixels in general. We
consider each pixel as a square. As we can see in Fig. 4 we have to adjust the
value of v(x) depending on the portion of pixels that arrive into the pixel x. In
general, there will be several correspondences that distribute their values on a
single pixel, so we propose to compute an average of all the portions of the flow
that fall into each pixel.

Fig. 4. Estimation the flow from I1 to I2 given the symmetric flow. As we can see
in this figure, we have to divide each correspondence in four different estimates –four
different pixels– in order to compute the values of the discrete function v(x).
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Considering the discrete nature of v(x) we may compute its value in each
position according to this functional

v(xi) = −
∑N

j=1 u(xj)pi,j

(
xi,xj − u(xj)

2 )
)

∑N
j=1 pi,j

(
xi,xj − u(xj)

2

) ,

where N is the size of the image and pi,j stands for the area of the pixel j that
fall into pixel i as can be seen in Fig. 4. Each xj − u(xj)

2 ), we generate four
different pi,j that will lie on neighbouring pixels. Lets see how we compute these
weights. To simplify we call a = (ax, ay) = xi and b = (bx, by) = xj − u(xj)

2

pi,j (a,b)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if max (|ax − bx|, |ay − by|) ≥ 1
(1 − (bx − ax)) · (1 − (by − ay)) if ax < bx and ay < by

(1 − (bx − ax)) · (1 + by − ay) if ax < bx and ay > by

(1 + bx − ax) · (1 − (by − ay)) if ax > bx and ay < by

(1 + bx − ax) · (1 + by − ay) if ax > bx and ay > by

.

A further issue to consider are the empty pixels,xi, that have no correspon-
dence in the other image –usually due to occlusions–. Normally these pixels are
situated close to the object boundaries in the direction of their displacements.
For these reasons we apply a post–processing step in order to fill up the holes.
This is a simple step in where after several iterations we complete the information
of the holes by averaging with the information from the neighbours.
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